1. $f(x)=x^{3}-6 x^{2}+1$
fonksiyonu aşağıdaki aralıklardan hangisinde daima azalandır?
A) $(0,4)$
B) $(1,5)$
C) $(-1,3)$

$$
\begin{array}{ll}
\text { D) }(4, \infty) & \text { E) }(-\infty, 3)
\end{array}
$$

f fonksiyonunun türevini alirsak

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x \\
& f^{\prime}(x)=3 x \\
& x=0 \\
& \downarrow
\end{aligned}(\underbrace{x-4}_{x=4}) \text { esitligi elde edilir. }
$$

$x=0$ ve $x=4$ apsisli noktalorda fonksiyonunun egimi 0 olv. (Aynı zamanda ekstremum noktaldrder

|  | - $-\infty$ | $\bigcirc$ | $4+\infty$ |
| :---: | :---: | :---: | :---: |
| $f^{\prime \prime}(x)$ | $+$ | - - | $+$ |
| $f(x)$ | artondr | azalandor | ortander |

2. $f(x)=x^{2}-m x+10$
fonksiyonu veriliyor
f fonksiyonunun azalan olduğu en geniş aralık ( $-\infty$,4] olduğuna göre, $m$ sayısı aşağıdakilerden hangisidir?
A) 3
B) 4
C) 7
D) 6
E) 8
$f$ fonksiyonunun türevini alirsak $f^{\prime}(x)=\underset{\downarrow}{2 x-m}$ esitligi elde edilir.
$x=\frac{m}{2}$ apsisli nokta ekstremum noktasider.

3. Gerçel sayılar kümesi üzerinde tanımlı $f$ fonksiyonu

$$
\begin{array}{ll}
f f(x)=x^{3}-x^{2}+10 x+1 \rightarrow & \begin{array}{l}
\text { türevini alir sak } \\
f^{\prime}(x)=3 x^{2}-2 x+10
\end{array} \\
\text { biçiminde veriliyor. } & \text { eśltliĝ elde edilir. }
\end{array}
$$

Buna göre, $f$ fonksiyonunun artan olduğu en geniş aralık aşağıdakilerden hangisidir?
A) $(-\infty, \infty)$
B) $(-\infty, 1)$
C) $(1,+\infty)$
D) $(-1,1)$
$\Delta<0$ oldūundon

$$
f \text { fonksiyonu daima }
$$

4. $f(x)=x^{3}+x^{2}+a x+1$
kuralı ile verilen $f$ fonksiyonu gerçel sayılar'kümesi üzerinde daima artan olduğuna göre, a sayısı aşağıdakilerden hangisi olabilir?
A) -2
B) -1
C) 0
D) $\frac{1}{4}$
E) 1
$f$ fonksiyonunun daima artan olabilmesi ícin $f^{\prime}$ nin türev fonksiyonunda $\underbrace{\Delta} \leqslant 0$, olmasi gorekir.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}+2 x+a \\
\Delta & =2^{2}-4 \cdot 3 \cdot a \\
\Delta & =4-12 a
\end{aligned}
$$

$$
4-12 a \leqslant 0
$$

5. $f(x)=x^{4}-4 x^{3}-18 x^{2}+1$

"E"dír.
fonksiyonu veriliyor.
Buna göre, $f^{\prime}(x)$ türev fonksiyonunun azalan olduğu aralık aşağıdakilerden hangisidir?
A) $(0,3)$
B) $(-1,3)$
C) $(0,4)$
D) $(-2,2)$
E) $(-1,4)$
$f$ fonksiyonunun türevini alirsak

6. Aslı Öğretmen matematik dersinđe öğrencilerine aşağıdaki soruyu sormuștur.
"Daima artan ve her gercel sayı isin tanimlı olan bir fffonksiyonu aşağidakilerden hangisidir?" $\longrightarrow \begin{aligned} & \text { a baskatsayl olmak üzpre, } \\ & \text { f'nin türev fonksiyonuilda }\end{aligned}$ $a>0$ ve $\Delta \leqslant 0$ olmaly

Buna göre, yukarıdaki sorunun cevabı aşağıdakilerden hangisidir?
A) $f(x)=x^{3}-x$ grofiğin: Gizcrsel
B) $f(x)=\left|x^{3}+1\right|-1$
C) $f(x)= \begin{cases}x^{4}-1, & x>1 \\ x^{3}, & x \leq 1\end{cases}$
D) $f(x)=\left\{\begin{array}{l}x^{3}-4 \\ x+4\end{array}\right.$
E) $f(x)=\frac{x^{2}+2}{x^{2}+1}$


DÜZELTME

## BIR FONKSI YONUN ARTAN VEYA AZA

1. Gerçek sayılar kümesi üzerinde tanımlı $y=f(x)$ fonksiyonunun türevi
kesinlikle $\quad f^{\prime}(x)=x^{2}-2 x-24=(x-6)(x+4)$ doğru
diyemeyiz olduğuna göre, $\begin{aligned} & \text { kesinlikke I. } f(-5)<f(-3) \\ & \text { dogुru } f(6)<f(7) \\ & \sqrt{-} \text { III. } f(0)<f(4)\end{aligned}$
kesinlikle

$f$ fonksiyonu $(-\infty,-4)$ ve $(6,+\infty)$ yanlıs ifadelerinden hangileri kesinlikle doğrudur? $(-4,6)$ arqliĝnda
A) Yalnız I
B) Yalnız II
C) Yalnız III
D) I ve III E) II ve III
2. Gerçel sayılar kümesi üzerinde tanımlı $f$ fonksiyonu
$y=f(x)=x^{3}-a x+1 \rightarrow$ türevi
$\begin{array}{ll}\text { biçiminde tanımlanıyor. } & f^{\prime}(x)=3 x^{2}-a \\ f \text { fonksiyonu } & x=-\sqrt{\frac{a}{3}} \quad x=\sqrt{\frac{a}{3}}\end{array}$

- $(-5,-2)$ aralığında artan
- $(-1,0)$ aralığında azalan
tum
sortlow
saplar saglar.
- $(4,5)$ aralığında artan olduğuna göre,

(1) $\mathrm{a}=12 \rightarrow$ olursa kökler -2 ve 2 olur. $(-5,-2)$ araliginda $\leftarrow$ II. $a=15 \rightarrow$ olursa kobler $-\sqrt{5}$ ve $\sqrt{5}$ olur. $\begin{aligned} & \text { aralininda } \\ & \text { dorim Ma } \\ & \text { artan depil. (III) } \mathrm{a}=9\end{aligned} \rightarrow$ olursa kökler $-\sqrt{3}$ ve $\sqrt{3}$ olur. tüm $\int$ eşitliklerinden hangileri doğru olabilir? saglor.
A) Yalnız 1
B) I ve III
C) Yalnız III
D) I ve II
E) Yalniz II

$$
\begin{aligned}
& x>0 \text { ise } f(x)=\frac{x-1}{x} \rightarrow f^{\prime}(x)=\frac{1}{x^{2}} \\
& x<0 \text { ise } f(x)=\frac{-(x+1)}{x} \rightarrow f^{\prime}(x)=\frac{1}{x^{2}}
\end{aligned}
$$

3. Sıfırdan farklı gerçel sayılarda tanımlı $f$ fonksiyonu

$$
\begin{array}{ll}
f(x)=\frac{|x|-1}{x} & \begin{array}{l}
f^{\prime}(x)=\frac{1}{x^{2}} \\
\text { fonksiyonunun } \\
\text { grafígini }
\end{array} \\
\text { biçiminde veriliyor. } & \text { Gizelim. }
\end{array}
$$

Buna göre, f fonksiyonu aşağıdaki aralıkların hangisinde daima artandır? $(-\infty, 0)$ araliḡinda ortan, $(0,+\infty)$ aralisinda azalon
A) $(-\infty, 2)$
B) $(-3,4)$
C) $(-1,1)$ oldugu.
sórülar.
4. Gerçel sayılarda tanımlı $f$,

$$
f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+a x+10
$$

biçiminde verilen bire bir ve örten bir fonksiyondur.
Buna göre, a'nın en kücük tam sfayı değeri kaçtır?
A) 0
B) 1
C) 2
D) -1
E) -2
fonksiyon dorina arton ya da daima azalon olmalider.
( $m$ baskatsayl olmak üzere)
daima artan $\rightarrow m>0$
olmasiccin $\rightarrow \Delta \leqslant 0$
türev fonksiyonurdar olmali.
$m<0$ dámaazalan $\Delta \leqslant 0 \leftarrow$ olmasificin olmale. turev fonksiyonunda
$f$ fonksiyonunun türevi $\rightarrow f^{\prime}(x)=x^{2}+x+a \rightarrow \Delta=1-4 a$ $\Delta \leqslant 0$ olmale.

5. $f(x)=\frac{x^{2}+m}{x+1}$ $1-4 a \leqslant 0$ | $4 a \leqslant 0$ |
| :--- |
| $\left.\frac{1}{4} \leqslant a \longrightarrow \begin{array}{l}a^{\prime} \text { en } \alpha z \\ \text { " } \perp \text { "olur. }\end{array}\right)$ |

fonksiyonunun ( $-\infty,-1$ ] ve $[-1, \infty$ ) aralıklarında daima artan olabilmesi için m'nin en geniş çözüm kümesi aşağıdakilerden hangisi olmalıdır?

$$
\begin{aligned}
& \text { A) }(0,1) \quad \text { B) }(-\infty,-1) \\
& f^{\prime}(x)=\frac{2 x(x+1)-1\left(x^{2}+m\right)}{(x+1)^{2}}=\frac{x^{2}+2 x-m}{(x+1)^{2}} \\
& x^{2}+2 x-m \text { E) }(1, \infty)(-\infty, 1) \\
& 4+4 m<0 \\
& M<-1
\end{aligned}
$$

$x=-2$ paydayi sifir yapor.
6. $\overbrace{R-\{-2\}}$ Bümesindeki tüm $\times$ gerçel sayıları için tanımlı bir $f$ fonksiyonu
f fonksiyonunun türevini

$$
f(x)=\frac{x^{3}+k}{x^{3}+n}
$$

biçiminde tanımlanıyor.

$$
\begin{array}{r}
P^{\prime}(x)=\frac{3 x^{2}(8-k)}{\left(x^{3}+8\right)^{2}} \text { esitliģi } \\
\\
\text { elde } \\
\text { edilir. }
\end{array}
$$

f'nin artan olduğu aralıklardan biri ( $-\infty,-2$ ] olduğuna göre, $\mathbf{k}+\mathbf{n}$ toplamının değeri aşağıdakilerden hangisi olabilir?

$$
\begin{aligned}
& \text { Turevin isaret } \\
& \text { tablosumu }
\end{aligned}
$$


A) 20
B) 18
C) 17
D) 16
E) 15

1. $f(x)=2 x-\frac{4}{x} \xrightarrow{\substack{f \text { fonk sigonumun } \\ \text { 1.tinirevi }}} f^{\prime}(x)=2+\frac{4}{x^{2}}$


## Buna göre,

$f^{\prime}(x)(-\infty, 0)$ ve $(0, \infty)$
X I. $f(x)$ fonksiyonu daima artandır. $\longrightarrow$ aralisinda arfundir
$R-\{0\}$ aralín da 11.
$f(x)$ fonksiyonunun birinci türev fonksiyonu darma artan $f^{\prime}(x)$ fonksiyonu, $(-7,-4)$ araliğında artandır. Olmaz. X III. $f^{\prime \prime}(x)$, fnin 2. türev fonksiyonu için $f^{\prime \prime}(x)>f^{\prime \prime}(x+1)$ eşitsizliği daima sağlanır. $\rightarrow f^{\prime \prime}(x)=\frac{-8}{x^{2}}$ fonksryonv ifadelerinden hangileri doğrudur? dorma azalandirq $x=0$ isin saǵlanmaf
A) Yalnız 1
B) Yalnız II
C) Yalnız III
3. Gerçel sayılar kümesi üzerinde 3. dereceden bir f polinom fonksiyonu

- katsayıları pozitif doğal sayılardır.
- $f(x)+f(-x)=0 \longrightarrow$ tek fonksiyon (Gift dereceliterim) şartlarını sağlamaktadır.

$$
f(x)=a x^{3}+b x \text { olsun. }
$$

Buna göre,
$f^{\prime}(x)=3 a x^{2}+b$ olur.
$f^{\prime \prime}(x)=6 a x$ olur.
VI. f fonksiyonu bire bir ve oortendir.
II. f fonksiyonunun türev fonksiyonu $\mathrm{f}^{\prime},(-\infty, 0)$ araliğın-

- da artandır. $(-\infty, 0)$ aralị̂inda azalandir.
III. $f$ fonksiyonunun birinci ikinci türev fonksiyonu $f^{\prime \prime}$ için
$f(x)=f^{\prime \prime}(x)$ eșitliğini sağlayan üç reel kök vardır.


## ifadelerinden hangileri kesinlikle doğrudur?

A) Yalniz 1
B) Yalnız II
C) I ve II
D) II ve III
E) I ve III
2. $[a, b] \subset R^{-}$ve $f:[a, b] \rightarrow R^{+}$olmak üzere, $[a, b]$ aralı̆̌ındaki her $x$ sayısı için
$\mathrm{f}(\mathrm{b})<\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{a})$
eşitsizliği sağlanmaktadır.
 $\rightarrow$ fidaima

$$
\because+0
$$

Buna göre, $g(x)=\frac{x}{f(x)}$
fonksiyonu için $g^{\prime}(x)=\frac{f(x)-f^{\prime}(x) \cdot x}{f^{2}(x)}=\frac{(+)-(-,-)}{+}$
X I. $y=g(x),[a, b]$ aralı̆̆ında azalandır. $\}$
$\frac{g(x)}{x}=\frac{1}{f(x)}$ UII. $y=\frac{g(x)}{x}$, [a,b] aralığında artandir. $y^{\prime}=\frac{-f^{\prime}(x)}{f^{\prime}(x)}=\frac{-(-)}{+}$ $X_{\text {III. }, ~} y=g(x) \cdot f^{2}(x),[a, b]$ aralığında azalandır. $y=f(x) \cdot x \quad \begin{aligned} & \text { XIII. } y=g(x) \cdot f^{2}(x),[a, b] \text { araliğında azalandır. } \\ & y^{\prime}=f(x)+f^{\prime}(x) \cdot x=++(-,)=+ \text { olur. }\end{aligned}$ ifadelerinden hangileri kesinlikle dogrudur? artan di,
A) Yalnız I
B) Yalniz II
C) Yalnız III
D) II ve III
E) I ve III
4. f fonksiyonu gerçel sayılarda türevli bir fonksiyondur.

- $f(0)=0$
- Her $x$ gerçel sayısı için $f^{\prime}(x)>0$ olur. $\rightarrow \operatorname{eggin~daima~}_{\text {pozitif. }}$
birebir
ve sirten ve orten

fonksiyonlarından hangilerinin tersi de fonksiyondur?
$\rightarrow$ birebir ve d̈rten olmali.
A) Yalnız $I$
B) Yalnız II
C) Yalnız III
D) II ve III E) I ve III

1. Gerçel sayılar kümesi üzerinde tanımli $y=f(x)$ fonksiyonu ile ilgili olarak
verilen sartlara göre isoret tablosud dusturalim.

- $(-\infty,-2)$ açık aralığında artandır.
- $(5,6)$ açık aralığında azalandır.
- $(6,8)$ açık aralığında artandır.

|  | -2 | 5 | 6 | 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | + |  | - | + |  |
| $f(x)$ | $\nearrow$ |  | $\searrow$ | 7 |  |

$f^{\prime}(x)$ fonksiyonumiun $(-\infty,-2)$ ve
$(6,8)$ aralıģında positif değer,
$(5,6)$ araliginda negatif deger aldiģ gòrülür.

III.
$(-\infty,-2)$ aralū̀ndo doina pozitif deger
3. Aşağıdaki grafik $y=f(x)$ fonksiyonuna aittir.


Tüm $\times$ gerçel sayıları için
$f(x)=a(x-4)(x+4)$ olsun. ( $a$, negatif)

- $f^{\prime}(x)=g(x)$ $\qquad$ $g(x)=2 a x$ olur. $\left[\begin{array}{l}h(x)=\int a\left(x^{2}-16\right) \cdot d x \\ h(x)=a\left(\frac{x^{3}}{3}-16 x\right)+c\end{array}\right.$ $h(x)=a\left(\frac{x^{3}}{3}-16 x\right)+c$ olur.
$(-\infty, 0]$. ffonksiyonunun artan olduğu en geniş değer aralığı $A$,
$(-\infty,+\infty)$. $g$ fonksiyonunun azalan olduğu en geniş değer aralığı $B$,
$[-4,4]$. $h$ fonksiyonunun artan olduğu en geniş değer aralığı $C$ olduğuna göre, $A \cap B \cap C$ kümesi aşağıdakilerden hangisidir?
A) $[-4,0]$
B) $[-4,4]$
C) $[-4, \infty)$
D) $[0,4]$
E) $(-\infty, 0]$
$A \rightarrow(-\infty, 0]$
$B \rightarrow(-\infty,+\infty)$
$C \rightarrow[-4,4]$


4. 



Yukarıdaki dik koordinat düzleminde $\mathrm{f}, \mathrm{g}$ ve h fonksiyonn- siyonuna larının grafikleri verilmiştir.
$f(0)<g(0)<h(0)$
olduğuna göre,
$f^{\prime}(1), h^{\prime}(2)$ ve $g^{\prime}(3)$
sayılarının sıralanışı aşağıdakilerden hangisinde doğru verilmiştir?
A) $g^{\prime}(3)<h^{\prime}(2)<f^{\prime}(1)$
B) $g^{\prime}(3)<f^{\prime}(1)<h^{\prime}(2)$
C) $\mathrm{f}^{\prime}(1)<\mathrm{g}^{\prime}(3)<\mathrm{h}^{\prime}(2)$
D) $h^{\prime}(2)<g^{\prime}(3)<f^{\prime}(1)$
E) $h^{\prime}(2)<f^{\prime}(1)<g^{\prime}(3)$
Bu durunda her $x$ degeri icin

